345. The Application of Weighted Least-squares Methods to the Computation of Stability Constants

By R. C. Lansbury, V. E. Price, and A. G. Smeeth
Two methods are described for calculating, with the aid of a digital computer, the successive formation constants of a complex system, using ligandnumber data. Weighted least-squares criteria were used in both methods for determining the constants.

A large number of graphical methods have been described for calculating successive formation constants defining complex equilibria. ${ }^{1}$ These methods tend to be subjective in nature and thus do not give objective estimates of the precision of the calculated constants; moreover, they weight the data in an arbitrary fashion, and are also often tedious to apply. More recently, several reports ${ }^{2}$ describe the use of digital computers for computing the constants, where by objective methods tests can be applied, but few (cf. ref. 3) give detailed account of the methods for specific problems. The present Paper describes two methods which can be generally applied to one of the most frequently used experimental techniques for determining stability constants, viz., the measurement of the pH of solutions of the ligands with and without the addition of the central co-ordinating ion. The methods of calculation apply specifically to mononuclear systems with a maximum co-ordination number of 2 , but they can be easily extended to systems with a maximum of 3 or 4 , and possibly up to 6, although a different numerical technique in which orthogonal polynomials are used would be more suitable for the problems of high order. ${ }^{4}$

Experimental

The present work arose from a study of complex-formation between silver ions and a number of aliphatic amino-compounds. Full experimental details and complete results will be published later, but, briefly, the experimental technique is a refined form of the pH -titration method used by Bjerrum ${ }^{5}$ to give free-ligand concentrations [A] and the corresponding ligand number \bar{n}, at constant ionic strength of 0.5 m . A newly developed cell with free diffusion liquid junction, ${ }^{6}$ in conjunction with a stable electrometer (E.I.L. Vibron), were used, so that e.m.f. measurements were reproducible to $\pm 0 \cdot 1 \mathrm{mv}$.

Weighting Procedure

The system studied involved the following equilibria:

$$
\begin{gather*}
\mathrm{Ag}^{+}+\mathrm{A} \rightleftharpoons \mathrm{AgA}^{+} \tag{1}\\
\mathrm{AgA}^{+}+\mathrm{A} \rightleftharpoons \mathrm{AgA}_{2}^{+} \tag{2}
\end{gather*}
$$

where A is an aliphatic amino-compound, it being understood that all species are solvated. Conventionally, two equilibrium constants are used to describe this system, viz., β_{1} and β_{2}, where β_{1} refers to the first equilibrium, and $\beta_{2}=\beta_{1} k_{2}$, where k_{2} refers to the second equilibrium. The formation function for such a system is given by

$$
\begin{equation*}
\bar{n}+(\bar{n}-1)[\mathrm{A}] \beta_{1}+(\bar{n}-2)[\mathrm{A}]^{2} \beta_{2}=0 \tag{3}
\end{equation*}
$$

There will, therefore, exist a series of equations of the form

$$
\begin{equation*}
\bar{n}_{i}+\left(\bar{n}_{i}-1\right)[\mathrm{A}]_{i} \beta_{1}+\left(\bar{n}_{i}-2\right)[\mathrm{A}]_{i}^{2} \beta_{2}=R_{i} \tag{4}
\end{equation*}
$$

where \bar{n}_{i} and [A]: are members of a set of experimentally determined values, and R_{i}, which should theoretically be zero, are residuals due to experimental errors. The problem was to
${ }^{1}$ Rossotti and Rossotti, "The Determination of Stability Constants," McGraw-Hill, New York, 1961.
${ }^{2}$ Deelstra, Vanderleen, and Verbeek, Bull. Soc. chim. belges, 1963, 72, 632, and references therein.
${ }^{3}$ Inman, Regan, and Girling, J., 1964, 348.
${ }^{4}$ Forsythe, J. Soc. Ind. Appl. Math., 1957, 5, No. 2, 74.
${ }^{5}$ Bjerrum, "Metal Ammine Formation in Aqueous Solution," Haase, Copenhagen, 1941.
${ }^{6}$ Greczek, Ph.D. Thesis, London, 1964.
choose the constants β_{1} and β_{2} according to a weighted least-squares criterion. Owing to the large variations in the size of the quantities $[A]_{i}$, the effects of the experimental errors on the residuals will vary considerably throughout the experiment. In the normal weighted least-squares technique each value of R^{2} is divided by its variance. This may be obtained from a knowledge of the variance of the measured quantities and the relations by which R is determined from them. Thus, the weighted least-squares adjustment requires that β_{1} and β_{2} be selected such that

$$
\begin{equation*}
S=\sum_{i=1}^{I} w_{i} R_{i}^{2} \tag{5}
\end{equation*}
$$

shall be a minimum, where I is the number of data points, and w_{i} is defined by

$$
\begin{equation*}
w_{i}=1 / \operatorname{var} R_{i}, \tag{6}
\end{equation*}
$$

var R_{i} being the variance of R_{i}. To determine the variance of R_{i} it is necessary to consider the possible sources of experimental errors. In the pH-titration method we have considered there to be two main sources of error. First, an error associated with the measurement of e.m.f. values, and secondly an error associated with the titre values. Some other errors, e.g., those caused by weighing and the calomel electrode are considered to be negligible. It is, however, possible that liquid-junction errors are significant, but it is not possible to allow for these theoretically. Hence, each residual R is a function of the corresponding e.m.f. reading (E) and titre reading $\left(C_{a}\right)$. If δE is the error associated with the measurement of E, and δC_{a} the error associated with the measurement of C_{a}, then the error δR in R will be given according to the propagation of errors, by

$$
\begin{equation*}
\delta R=(\partial R / \partial E) \delta E+\left(\partial R / \partial C_{a}\right) \delta_{a} \tag{7}
\end{equation*}
$$

so that the variance of R will then be

$$
\begin{equation*}
\operatorname{var} R=(\partial R / \partial E)^{2} \operatorname{var} E+\left(\partial R / \partial C_{a}\right)^{2} \operatorname{var} C_{a} \tag{8}
\end{equation*}
$$

assuming no correlation exists between the errors in E and C_{a}.
The free-ligand concentrations [A] were determined from the measured e.m.f.s and total titrant added in the usual way, ${ }^{5}$ so that

$$
\begin{equation*}
[\mathrm{A}]=C_{a} \mathrm{e}^{\mathbf{2 \cdot 3 0 3} E / k} \tag{9}
\end{equation*}
$$

where $k=$ slope of the glass electrode, $C_{a}=$ total un-ionised ligand concentration available for complex-formation, and $E=$ difference in cell e.m.f. in the presence and absence of silver ions $\left(E_{1}-E_{2}\right)$.

The ligand number \bar{n} is defined by the equation

$$
\begin{equation*}
\bar{n}=\left(C_{a}-[\mathrm{A}]\right) / C_{m} \tag{10}
\end{equation*}
$$

where $C_{m}=$ total silver concentration. It is now possible to determine $\partial R / \partial E$ and $\partial R / \partial C_{a}$. Differentiation of equation (4) with respect to \bar{n} and [A] gives

$$
\begin{equation*}
\delta R=\left(1+[\mathrm{A}] \beta_{1}+[\mathrm{A}]^{2} \beta_{2}\right) \delta \bar{n}+\left\{(\bar{n}-1) \beta_{1}+2(\bar{n}-2)[\mathrm{A}] \beta_{2}\right\} \delta[\mathrm{A}] \tag{11}
\end{equation*}
$$

Differentiation of equation (10) with respect to [A] and C_{a} gives

$$
\begin{equation*}
\delta \bar{n}=\left(1 / C_{m}\right)\left(\delta C_{a}-\delta[\mathrm{A}]\right) \tag{12}
\end{equation*}
$$

Taking the logarithm of both sides of (9), and differentiating, gives

$$
\begin{equation*}
\delta[\mathrm{A}] /[\mathrm{A}]=\delta C_{a} / C_{a}+2 \cdot 303 \delta E / k \tag{13}
\end{equation*}
$$

and eliminating $\delta \bar{n}$ and $\delta[A]$ from equation (11), using equations (12) and (13), we obtain

$$
\begin{array}{r}
\delta R=\left\{\left(1 / C_{m}\right)\left(1+[\mathrm{A}] \beta_{1}+[\mathrm{A}]^{2} \beta_{2}\right)+\left([\mathrm{A}] / C_{a}\right)(\bar{n}-1) \beta_{1}+\left(2 / C_{a}\right)(\bar{n}-2)[\mathrm{A}]^{2} \beta_{2}-\right. \\
\left.\left([\mathrm{A}] / C_{a} C_{m}\right)\left(1+[\mathrm{A}] \beta_{1}+[\mathrm{A}]^{2} \beta_{2}\right)\right\} \delta C_{a}+(2 \cdot 303[\mathrm{~A}] / k)\left\{(\bar{n}-1) \beta_{1}+\right. \\
\left.2(\bar{n}-2) \beta_{2}[\mathrm{~A}]-\left(1 / C_{m}\right)\left(1+[\mathrm{A}] \beta_{1}+[\mathrm{A}]^{2} \beta_{2}\right)\right\} \delta E \tag{14}
\end{array}
$$

which may be written conveniently as

$$
\begin{equation*}
\delta R=P \delta E+Q \delta C_{a} \tag{15}
\end{equation*}
$$

1898 Lansbury et al.: The Application of Weighted Least-squares

The variance of R may then be obtained from (15):

$$
\begin{equation*}
\operatorname{var} R=P^{2} \operatorname{var} E+Q^{2} \operatorname{var} C_{a} \tag{16}
\end{equation*}
$$

Since E represents a difference in cell e.m.f.s $\left(E_{1}-E_{2}\right)$, then

$$
\begin{equation*}
\operatorname{var} E=\operatorname{var} E_{1}+\operatorname{var} E_{2} \tag{17}
\end{equation*}
$$

and since the precision of measurement is the same for E_{1} and E_{2}, i.e., var $E_{1}=\operatorname{var} E_{2}$, then var $E=2$ var E_{1}. Equation (17) now becomes

$$
\begin{equation*}
\operatorname{var} R=2 P^{2} \text { var } E_{1}+Q^{2} \operatorname{var} C_{a} \tag{18}
\end{equation*}
$$

The titre error of the micro-burette was taken as $0.01 \mathrm{ml} . \delta C_{a}$ is expressed in moles $/ \mathrm{l}$., and since the titrant used was 0.500 m -sodium hydroxide the range of the error δC_{a} is therefore $\pm 0.000005 \mathrm{~mole} / \mathrm{l}$. The range of the error δE_{a} is $\pm \mathbf{0 . 1} \mathrm{mv}$. The variances of E_{1} and C_{a} are proportional to the squares of the ranges of the errors associated with them.
β_{1} and β_{2} can now be calculated from a series of weighted equations of the type

$$
\begin{equation*}
\left\{\left(\bar{n}_{i}-1\right)[\mathrm{A}]_{i} \beta_{i}+\left(\bar{n}_{i}-2\right)[\mathrm{A}]_{i}^{2} \beta_{2}\right\} w_{i}=-w_{i} \bar{n}_{i} \tag{19}
\end{equation*}
$$

One of the simplest methods of fitting β_{1} and β_{2} to these equations, using a least-squares criterion, is by matrix algebra methods. Equation (19) may be written in the matrix form

$$
\begin{equation*}
\mathbf{w Z x}=\mathbf{w} \mathbf{Y} \tag{20}
\end{equation*}
$$

where \mathbf{X} is the column vector $\left|\begin{array}{l}\beta_{1} \\ \beta_{2}\end{array}\right|, \mathbf{Y}$ is the column vector whose elements are $-n_{i}, \mathbf{Z}$ is an ($\mathrm{I} \times 2$) matrix whose first column consists of the elements ($\bar{n}_{i}-1$) $[A]_{i}$ and whose second column consists of the elements $\left(\bar{n}_{i}-2\right)[\mathrm{A}]_{i}{ }^{2}$, and \mathbf{w} is a diagonal matrix of elements w_{i}. The corresponding weighted normal equations are

$$
\begin{equation*}
\mathbf{Z}^{\mathrm{T}} \mathbf{W} \mathbf{Z} \mathbf{x}=\mathbf{Z}^{\mathrm{T}} \mathbf{W} \mathbf{Y} \tag{21}
\end{equation*}
$$

where \mathbf{Z}^{T} is the transpose of \mathbf{Z}. The solution of these equations is given formally by inverting ($\mathbf{Z}^{\mathrm{T}} \mathbf{W} \mathbf{Z}$), and multiplying into the column vector ($\mathbf{Z}^{\mathrm{T}} \mathbf{W} \mathbf{Y}$), thus

$$
\begin{equation*}
\mathbf{x}=\left(\mathbf{Z}^{T} \mathbf{W} \mathbf{Z}\right)^{-1}\left(\mathbf{Z}^{T} \mathbf{W} \mathbf{Y}\right) \tag{22}
\end{equation*}
$$

It can be seen from equations (14) and (15) that the values of P and Q depend on the magnitude of β_{1} and β_{2}. However, the weights are not very sensitive to variations in these constants, so that approximate estimates may be used, e.g., $\beta_{1}=1 /[\mathrm{A}]$ at $\bar{n}=0 \cdot 5$, and $k_{2}=1 /[\mathrm{A}]$ at $\bar{n}=1.5$. Successive approximations may then be used until constant values of β_{1} and k_{2} are obtained, but it is rarely necessary to apply more than one iteration.

The standard deviations of the constants, β_{j}, are given by

$$
\begin{equation*}
\sigma_{\beta j}^{2}=\left(\mathbf{Z}^{\mathrm{T}} \mathbf{w Z}\right)_{j j}^{-1} S_{\mathrm{min} .} /(I-2) \tag{23}
\end{equation*}
$$

where $\left(\mathbf{Z}^{\mathrm{T}} \mathbf{W} \mathbf{Z}\right)_{j j}^{-\mathbf{1}}$ is the j th diagonal element of the inverse matrix $\left(\mathbf{Z}^{\mathrm{T}} \mathbf{w} \mathbf{Z}\right)^{-\mathbf{1}}, S_{\min .}$ is the value of S calculated by substituting the values of β_{1} and β_{2} obtained from equation (22) into equation (5), and ($I-2$) corresponds to the number of degreas of freedom of the system. ${ }^{7}$

The second method for calculating the constants makes use of the symmetrical nature of the formation curve. We can fix the value of β_{2} so that the theoretical and experimental values are the same at the central point where $\bar{n}=1$, and then rotate the formation curve about it by varying β_{1} until the " best " fit to the experimental data is obtained.

Rearranging equation (3) gives

$$
\begin{equation*}
\bar{n}=\left(\beta_{1}[\mathrm{~A}]+2 \beta_{2}[\mathrm{~A}]^{2}\right) /\left(1+\beta_{1}[\mathrm{~A}]+\beta_{1}[\mathrm{~A}]^{2}\right) \tag{24}
\end{equation*}
$$

A calculated \bar{n} value may be obtained from equation (24) using the experimental [A] value and given values of β_{1} and β_{2}. If this calculated \bar{n} value be given by \bar{n}_{c}, then there will exist a residual R_{i} given by

$$
\begin{equation*}
R_{i}=\left(\bar{n}-\bar{n}_{c}\right) \tag{25}
\end{equation*}
$$

${ }^{2}$ Dumond and Cohen, Rev. Mod. Phys., 1953, 25, 691.
where \bar{n} is the experimental \bar{n} value given by equation (10). Hence,

$$
R_{i}=\left[\frac{C_{a}-[\mathrm{A}]}{C_{m}}-\frac{\beta_{1}[\mathrm{~A}]+2 \beta_{1}[\mathrm{~A}]^{2}}{1+\beta_{1}[\mathrm{~A}]+\beta_{1}[\mathrm{~A}]^{2}}\right]
$$

If β_{2} is fixed, then we require a value of β_{1} such that $\sum_{i=1}^{I} w_{i} R_{i}{ }^{2}$ shall be a minimum. In order to determine the weighting factors w_{i}, it is necessary to determine the distribution of the residuals R_{i} from a consideration of the function defining R_{i} and the errors associated with the evaluation of R_{i}, viz., errors in E and C_{a}. In a similar manner as previously, it can be shown that

$$
\begin{aligned}
& \delta R=\left[-\frac{1}{C_{m}}-\frac{\beta_{1}[\mathrm{~A}]+\beta_{1} \beta_{2}[\mathrm{~A}]^{3}+4 \beta_{2}[\mathrm{~A}]^{2}}{\left(\mathrm{I}+\beta_{1}[\mathrm{~A}]+\beta_{2}[\mathrm{~A}]^{2}\right)^{2}}\right]\left[\frac{2 \cdot 303[\mathrm{~A}]}{k}\right] \delta E \\
&+\left[\frac{1}{C_{m}}+\left\{-\frac{1}{C_{m}}-\frac{\beta_{1}[\mathrm{~A}]+\beta_{1} \beta_{2}[\mathrm{~A}]^{3}+4 \beta_{2}[\mathrm{~A}]^{2}}{\left(1+\beta_{1}[\mathrm{~A}]+\beta_{2}[\mathrm{~A}]^{2}\right)^{2}}\right\} \overline{\mathrm{A}]}\right] \delta C_{a}
\end{aligned}
$$

from which var R can be determined and hence the weighting factors. The computer was programmed to evaluate R_{i} and w_{i}, and hence $\sum_{i=1}^{I} w_{i} R_{2}{ }^{2}$ for a particular value of β_{1}, and to perform this repeatedly for different values of β_{1}, keeping β_{2} constant. This was continued until a minimum was found for the weighted sum of the squares of the residuals. The value of β_{1} which gave this minimum was then noted.

Results

Titrations of 50 ml . of $0.500 \mathrm{~m}-4$-aminobutan-1-ol nitrate with 0.500 m -sodium hydroxide in 0.500 m -potassium nitrate, in the presence of (a) 15 ml . of $0.500 \mathrm{~m}-\mathrm{KNO}_{3}$ or (b) 15 ml . of $0.050 \mathrm{~m}-\mathrm{AgNO}_{3}$ in $0.450 \mathrm{~m}-\mathrm{KNO}_{3}$ at 20°

$\underset{(\mathrm{ml} .)}{\mathrm{NaOH}}$	$\Delta \mathrm{pH}$	pA	\bar{n}	$\log \left(w_{1}\right)$	$\log \left(w_{2}\right)$	$\underset{(\mathrm{ml} .)}{\mathrm{NaOH}}$	$\Delta \mathrm{pH}$	pA	$\overline{1}$	$\log \left(w_{1}\right)$	$\log \left(w_{2}\right)$
$0 \cdot 10$	1.541	$4 \cdot 656$	0.065	6.731	$4 \cdot 227$	1.50	1.718	$3 \cdot 666$	0.980	$4 \cdot 201$	$4 \cdot 410$
$0 \cdot 20$	$1 \cdot 615$	$4 \cdot 429$	$0 \cdot 130$	$6 \cdot 181$	$4 \cdot 498$	$1 \cdot 60$	$1 \cdot 707$	$3 \cdot 628$	$1 \cdot 045$	$4 \cdot 123$	$4 \cdot 428$
$0 \cdot 30$	$1 \cdot 654$	$4 \cdot 293$	$0 \cdot 195$	$5 \cdot 810$	$4 \cdot 840$	$1 \cdot 70$	$1 \cdot 695$	$3 \cdot 590$	$1 \cdot 110$	$4 \cdot 047$	$4 \cdot 455$
$0 \cdot 40$	$1 \cdot 683$	$4 \cdot 198$	$0 \cdot 261$	$5 \cdot 547$	$5 \cdot 294$	$1 \cdot 80$	$1 \cdot 678$	$3 \cdot 549$	$1 \cdot 174$	3-960	$4 \cdot 491$
0.50	$1 \cdot 702$	$4 \cdot 121$	$0 \cdot 327$	$5 \cdot 331$	$5 \cdot 121$	1.90	1-668	$3 \cdot 516$	$1 \cdot 238$	$3 \cdot 912$	$4 \cdot 538$
$0 \cdot 60$	1-718	$4 \cdot 058$	$0 \cdot 392$	$5 \cdot 160$	$4 \cdot 896$	$2 \cdot 00$	$1 \cdot 651$	$3 \cdot 477$	$1 \cdot 303$	$3 \cdot 846$	$4 \cdot 598$
0.70	1.726	$4 \cdot 000$	$0 \cdot 458$	$5 \cdot 003$	$4 \cdot 705$	$2 \cdot 20$	1-602	3.389	$1 \cdot 429$	3.688	$4 \cdot 666$
$0 \cdot 80$	1.733	3.950	0.523	$4 \cdot 870$	$4 \cdot 570$	$2 \cdot 40$	$1 \cdot 542$	$3 \cdot 292$	$1 \cdot 553$	3-527	$4 \cdot 753$
0.90	$1 \cdot 740$	$3 \cdot 906$	$0 \cdot 589$	$4 \cdot 762$	$4 \cdot 475$	$2 \cdot 60$	$1 \cdot 456$	3•173	1-671	3-306	$4 \cdot 865$
1.00	$1 \cdot 740$	$3 \cdot 861$	$0 \cdot 654$	$4 \cdot 647$	$4 \cdot 444$	$2 \cdot 80$	1.338	$3 \cdot 023$	1.779	$2 \cdot 981$	$4 \cdot 997$
$1 \cdot 10$	$1 \cdot 738$	$3 \cdot 818$	$0 \cdot 719$	$4 \cdot 543$	$4 \cdot 424$	$3 \cdot 00$	$1 \cdot 167$	$2 \cdot 824$	1.862	$2 \cdot 361$	$5 \cdot 172$
$1 \cdot 20$	$1 \cdot 737$	3.780	0.785	$4 \cdot 453$	$4 \cdot 407$	$3 \cdot 60$	$0 \cdot 729$	$2 \cdot 310$	1.950	-0.041	$5 \cdot 403$
$1 \cdot 30$	1.731	3.740	$0 \cdot 850$	$4 \cdot 362$	$4 \cdot 400$	$4 \cdot 00$	0.581	$2 \cdot 119$	1.965	-1.109	$5 \cdot 746$
$1 \cdot 40$	1.723	3.700	0.915	$4 \cdot 269$	$4 \cdot 401$						

Recorded in the Table are a representative set of \bar{n} and pA values (where $\mathrm{pA}=-\log [\mathrm{A}]$) obtained for a silver complex system. Also recorded is the volume of sodium hydroxide added and the $\Delta \mathrm{pH}$ values, where $\Delta \mathrm{pH}=\left(E_{1}-E_{2}\right) / k$, and the weighting factors for both methods recorded as their logarithmic values ($w_{1}=$ weights for first method, and w_{2} for the second method). The computed values for $\log \beta_{1}$ and $\log \beta_{2}$ are $3 \cdot 41 \pm 0.05$ and $7 \cdot 30 \pm 0.02$, respectively, the ranges being given by the 95% significance level, i.e., $1 \cdot 96 \sigma_{\log \beta j}$. The value for $\log \beta_{1}$ from the second method, using $\log \beta_{2}=7 \cdot 30$, was $3 \cdot 41$.

Discussion

In the first method of calculation the values of \oiiint_{i} are small for those measurements towards the end of the titration. This does not indicate, however, that these experimental results are less reliable than those obtained earlier. It does indicate that the latter residuals, as calculated from equation (4), are more sensitive than the earlier ones to the effect of the experimental errors, which we have assumed lie within ranges of constant size throughout the complete experiment. One could quite easily rearrange equation (3) into
some other form with different residuals such that the distribution of weights would be quite different.

In general it is unnecessary to plot the results graphically, since any large experimental errors are exposed by a large standard deviation in the results. However, if large standard deviations are observed it is a simple matter to plot \bar{n} against pA values since these have been calculated by the computer, and so determine the exact nature of these errors. Often however a print-out of the residuals will indicate this equally well.

In the second method the value of β_{2} can be obtained graphically or by use of an interpolation technique. Because of the insensitivity of the value to experimental errors compared with the sensitivity of k_{1} and k_{2} values, this will give a reliable value.

The agreement between the β_{1} values obtained using either method is good, supporting the validity of the techniques.

We should like to thank the Chemical Society for a grant towards the cost of the chemicals and glass cells.

Northampton College, St. John Street, London E.C.I.

